109 research outputs found

    Phase transitions in AdS soliton spacetime through marginally stable modes

    Full text link
    We investigate the marginally stable modes of the scalar (vector) perturbations in the AdS soliton background coupled to electric field. In the probe limit, we find that the marginally stable modes can reveal the onset of the phase transitions of this model. The critical chemical potentials obtained from this approach are in good agreement with the previous numerical or analytical results.Comment: 14 pages, 3 figures; Minor changes are mad

    Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin inhibits the proliferation of ARPE-19 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The antiproliferative effect of the Hsp90 inhibitor 17-AAG (17-allylamino-17-demethoxygeldanamycin) on human retinal pigment epithelial cells is investigated.</p> <p>Methods</p> <p>MTT and flow cytometry were used to study the antiproliferative effects of the 17-AAG treatment of ARPE-19 cells. 2D gel electrophoresis (2-DE) and mass spectrometry were applied to detect the altered expression of proteins, which was verified by real-time PCR. Gene Ontology analysis and Ingenuity Pathway Analysis (IPA) were utilized to analyze the signaling pathways, cellular location, function, and network connections of the identified proteins. And SOD assay was employed to confirm the analysis.</p> <p>Results</p> <p>17-AAG suppressed the proliferation of ARPE-19 cells by inducing cell cycle arrest and apoptosis. Proteomic analysis revealed that the expression of 94 proteins was altered by a factor of more than 1.5 following exposure to 17-AAG. Of these 94, 87 proteins were identified. Real-time PCR results indicated that Hsp90 and Hsp70, which were not identified by proteomic analysis, were both upregulated upon 17-AAG treatment. IPA revealed that most of the proteins have functions that are related to oxidative stress, as verified by SOD assay, while canonical pathway analysis revealed glycolysis/gluconeogenesis.</p> <p>Conclusions</p> <p>17-AAG suppressed the proliferation of ARPE-19 cells by inducing cell cycle arrest and apoptosis, and possibly by oxidative stress.</p

    Poly[[tetra­kis­(μ-2-anilinobenzoato-κ2 O:O′)tetra-μ1,1,1-azido-tetra-μ1,1-azido-octa­methano­lhexa­nickel(II)] methanol hexa­solvate]

    Get PDF
    The crystal structure of the title compound, [Ni6(C13H10NO2)4(N3)8(CH3OH)8]·6CH3OH, consists of a centrosymmetric hexa­nuclear [NiII 6(C13H10NO2)4(N3)8(CH3OH)8] mol­ecule and six methanol solvent mol­ecules. In the hexa­nuclear unit, the six octa­hedrally coordinated NiII atoms are linked by four μ1,1,1-azide and four μ1,1-azide bridges, forming a face-sharing Ni6N8 tetra­cubane-like unit with four missing corners. The NiII atoms are further bridged by four μ1,2-carboxalate groups. Neighbouring hexa­nuclear units are connected via N—H⋯O hydrogen-bonding inter­actions into a three-dimensional structure. Although the H atoms of the methanol OH groups could not be located, O⋯N/O contacts between 2.65 and 2.86 Å suggest that these mol­ecules participate in hydrogen bonding

    Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    Get PDF
    BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F(1) hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study

    Rapid and Unconditional Parametric Reset Protocol for Tunable Superconducting Qubits

    Full text link
    Qubit initialization is a critical task in quantum computation and communication. Extensive efforts have been made to achieve this with high speed, efficiency and scalability. However, previous approaches have either been measurement-based and required fast feedback, suffered from crosstalk or required sophisticated calibration. Here, we report a fast and high-fidelity reset scheme, avoiding the issues above without any additional chip architecture. By modulating the flux through a transmon qubit, we realize a swap between the qubit and its readout resonator that suppresses the excited state population to 0.08% ±\pm 0.08% within 34 ns (284 ns if photon depletion of the resonator is required). Furthermore, our approach (i) can achieve effective second excited state depletion, (ii) has negligible effects on neighbouring qubits, and (iii) offers a way to entangle the qubit with an itinerant single photon, useful in quantum communication applications.Comment: 38 pages, 15 figure
    corecore